

CBF-SDP Emulator

This is an emulator for the Correlator Beamformer
and its data sending capabilities.
It reads data from a data source
(typically a Measurement Set,
but other sources will be added in the future,
like correlator data dumps)
and sends it over a network transport
to a number of receivers,
thus mimicking the CBF-SDP interface.

This is an extensible and configurable package
that has been designed to support multiple communication protocols
and provide a platform for testing consumers of CBF data payloads.
It currently only implements the SPEAD transmission protocol,
but other protocols can be added in the future.

	Installation
	CAR

	Poetry (Developer)

	Sender
	Configuration options

	Endpoint specification

	Running
	Tango device wrapper

	In SDP

	API documentation
	cbf_sdp.packetiser module

	cbf_sdp.transmitters.spead2_transmitters module

Installation

CAR

This program is distributed by python wheels
and all dependencies should be automatically pulled.
The only caveat is that some of the dependencies
are found in the CAR server instead of PyPI,
so we need to point pip to the CAR in order to them:

Install directly via pip from the CAR repository
pip install --extra-index-url=https://artefact.skao.int/pypi-all/simple ska-sdp-cbf-emulator

Poetry (Developer)

This project requires packaging using Poetry before being installation.
Poetry can be installed to OS python environment using either of the
following:

System user install
curl -sSL https://install.python-poetry.org | python3 -

Install latest version on PyPI
pip install -U poetry

For local development and packaging, Poetry can be used in several ways:

Go into the top-level directory of this repository
cd ska-cbf-sdp-emulator

(if using pyenv) Use pyenv for testing against a specific python version. It is
recommended to regularly test versions used by continuous integration.
pyenv local 3.10.6

(if using poetry env) Use Poetry virtual environment to install and use
project dependencies and package in isolation from python global packages.
poetry env use 3.10.6

Regenerate the lock file for the active python environment (poetry commands
will always use a virtual environment if one is found).
poetry lock

Development install to the currently active python environment. This will
setup a .pth in site-packages that points to the development directory.
poetry install

Test commands within the poetry virtual environment, e.g.
poetry run pytest

Alternatively can use the poetry shell instead of `poetry run`.
poetry shell
pytest

(if using poetry shell) Deactivate Poetry shell
exit

(if using poetry env, optional) To remove/delete a Poetry environment run
the following from the top-level directory
poetry env remove 3.10.6

(if using pyenv, optional) Remove association with pyenv python version
pyenv local --unset

Once changes are made and tested, a python wheel may be generated using Poetry
to the dist/ directory that can be installed via pip. Building wheel inside a
poetry virtual environment will mark the wheel with the specific python version:

Build a local development wheel
poetry build
pip install dist/*.whl

This is performed automatically when using pip:

Use pip to install the project (note: -e editable mode does not work here)
pip install --extra-index-url=$PYPI_REPOSITORY_URL/simple .

Sender

Configuration options

The following configuration categories/names are supported:

	reader: these are configuration options applied
when reading the input Measurement Set.

	start_chan: the first channel for which data is read.
Channels before this one are skipped.
If start_chan is bigger
than the actual number of channels in the input MS
an error is raised.

	num_chan: number of channels for which data is read.
If num_chan + start_chan are bigger
than the actual number of channels in the input MS
then num_chan is adjusted.

	num_timestamps: number of timestamps to be sent, defaults to 0 which is all of them.

	num_repeats: defaults to 1 - number of times the number of timestamps are sent.
This will send the same data over and over which is less realistic but imposes less stress on the file-system.
TIME values increment with each repetition.

	transmission: these are options that apply
to the transmission method.

	scan_id: the scan_id to use for all payloads in transmission.

	method: the transmission method to use, defaults to spead2.

	target_host: the host where data will be sent to.

	target_port_start: the first port where data will be sent to.

	endpoints: the endpoints where data will be sent to (see below).
If present, target_host and target_port_start are ignored.

	channels_per_stream: number of channels for which data will be sent
in a single stream.

	max_packet_size: the maximum size of packets to build, used by
spead2.

	buffer_size: the socket buffer size, used by
spead2.

	rate: the maximum send data rate, in bytes/s.
Used by spead2, defaults to 1 GB/s.

	time_interval:: the period of time to wait between sending data
for successive data dumps.
Positive values are used as-is.
A value of 0 means to use the time differences
in the TIME column of the Measurement Set.
Negative values mean to don’t wait, sending data as fast as possible.

	transport_protocol: the network transport protocol used by spead2.
Supported values are udp and tcp, defaults to udp.

	delay_start_of_stream_heaps:
the number of data heaps to send on each stream
before sending the corresponding start-of-stream (SOS) heaps.
0 (default) means don’t delay the sending of the SOS heaps,
< 0 means never send the SOS heaps.
Note that non-zero values
emulate out-of-order transmission
for the SOS heaps.

Endpoint specification

There are two ways to specify the target endpoints
where data will be sent to.
Note that in both cases the number of streams that are set up
equals number_channels / transmission.channels_per_stream,
where number_channels depends on reader.num_chan
and the input Measurement Set.

	Using transmission.target_host and transmission.target_port.
When using these options then all streams will be sent to target_host,
and successive streams will be sent to successive ports
starting at target_port.

	Using transmission.endpoints.
This option is a single string of comma-separated endpoint specifications.
Each endpoint takes the form of host:ports,
where ports is either a single number,
or a range like start-end.
For example, 127.0.0.1:8000,127.0.0.1:8001 and 127.0.0.1:8000-8001
are equivalent.

If the list of endpoints to use
is less than the number of streams
an error is raised.
If it’s larger,
then the first endpoints are used,
and the rest are silently ignored.

Running

An emu-send program should be available after installing the package.
This program takes a Measurement Set and transmits it over the network
using the preferred transmission method.

	
measurement_set

	The measurement set to read data from

	
-eb execution_block_id

	An execution block id to monitor for scans

	
-c config

	A configration file to read options from

	
-o option

	Additional configuration options in the form of category.name=value

	
-q quiet

	Additional parameter to silence info logging from standard output

Tango device wrapper

A Tango device wrapping the emulator sender
is available under CBF-SDP Emulator TANGO Devices [https://developer.skatelescope.org/projects/cbf-sdp-emulator-tango-device/en/latest/index.html].
The purpose of this Tango device
is to be used as a simulation of the real CBF,
making it possible to run a full end-to-end SKA system
that exercises the visibility data flow.

In SDP

In the context of the SDP Integration [https://developer.skao.int/projects/ska-sdp-integration/en/latest/index.html]
the emulator is deployed as a Helm chart
to exercise the visibility receive workflow.

API documentation

This section describes the main entry points for the emulator API.
While most users will be using the emu-send program,
the sender code can be embedded directly into arbitrary python programs,
like in the case of the CBF-SDP Emulator TANGO Devices [https://developer.skatelescope.org/projects/cbf-sdp-emulator-tango-device/en/latest/index.html].

cbf_sdp.packetiser module

Primary send functions for ska-sdp-cbf-emulator

	
cbf_sdp.packetiser.packetise(config: configparser.ConfigParser, ms: Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7f9aa1620b50>, pathlib.Path, str])

	Reads data off a Measurement Set and transmits it using the transmitter
specified in the configuration.

Uses the vis_reader get data from the measurement set then gives it to the
transmitter for packaging and transmission. This code is transmission
protocol agnostic.

cbf_sdp.transmitters.spead2_transmitters module

Implementation for the SPEAD2 network transport

This module contains the logic to take ICD Payloads and transmit them using
the SPEAD protocol.

	
class cbf_sdp.transmitters.spead2_transmitters.Spead2SenderPayload(num_baselines=None, num_channels=None)

	SPEAD2 payload following the CSP-SDP interface document

	
cbf_sdp.transmitters.spead2_transmitters.parse_endpoints(endpoints_spec)

	Parse endpoint specifications.

Each endpoint is a colon-separated host and port pair, and multiple
endpoints are separated by commas. A port can be a single number or a range
specified as “start-end”, both inclusive.

	
class cbf_sdp.transmitters.spead2_transmitters.transmitter(config)

	SPEAD2 transmitter

This class uses the spead2 library to transmit visibilities over multiple
spead2 streams. Each visiblity set given to this class’ send method is
broken down by channel range (depending on the configuration parameters),
and each channel range is sent through a different stream.

	
close()

	Sends the end-of-stream message

	
prepare(num_baselines, num_channels)

	Create the sending SPEAD streams

	
send(scan_id: int, ts: int, ts_fraction: int, vis: <sphinx.ext.autodoc.importer._MockObject object at 0x7f9aa1534b80>)

	Send a visibility set through all SPEAD2 streams

	Parameters

	
	int – the scan id

	ts – the integer part of the visibilities’ timestamp

	ts_fraction – the fractional part of the visibilities’ timestamp

	vis – the visibilities

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cbf_sdp	

 	
 	
 cbf_sdp.packetiser	

 	
 	
 cbf_sdp.transmitters.spead2_transmitters	

Index

 Symbols
 | C
 | E
 | M
 | P
 | S
 | T

Symbols

 	
 	
 -c config

 	emu-send command line option

 	
 -eb execution_block_id

 	emu-send command line option

 	
 	
 -o option

 	emu-send command line option

 	
 -q quiet

 	emu-send command line option

C

 	
 	cbf_sdp.packetiser (module)

 	
 	cbf_sdp.transmitters.spead2_transmitters (module)

 	close() (cbf_sdp.transmitters.spead2_transmitters.transmitter method)

E

 	
 	
 emu-send command line option

 	-c config

 	-eb execution_block_id

 	-o option

 	-q quiet

 	measurement_set

M

 	
 	
 measurement_set

 	emu-send command line option

P

 	
 	packetise() (in module cbf_sdp.packetiser)

 	
 	parse_endpoints() (in module cbf_sdp.transmitters.spead2_transmitters)

 	prepare() (cbf_sdp.transmitters.spead2_transmitters.transmitter method)

S

 	
 	send() (cbf_sdp.transmitters.spead2_transmitters.transmitter method)

 	
 	Spead2SenderPayload (class in cbf_sdp.transmitters.spead2_transmitters)

T

 	
 	transmitter (class in cbf_sdp.transmitters.spead2_transmitters)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 CBF-SDP Emulator

 		
 Installation

 		
 CAR

 		
 Poetry (Developer)

 		
 Sender

 		
 Configuration options

 		
 Endpoint specification

 		
 Running

 		
 Tango device wrapper

 		
 In SDP

 		
 API documentation

 		
 cbf_sdp.packetiser module

 		
 cbf_sdp.transmitters.spead2_transmitters module

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

